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Introduction 
 
When a sound of a specific frequency is emitted from a frequency 
emitter and positioned at the end of an open-ended tube, a 
standing wave is created as a result of interference. Due to the 
nature of the tube, the positions of maximum displacement (anti-
node) are situated at the open ends, while the position of zero 
displacement (node) is at the center of the tube. From this, the 
relationship between the length from the anti-node at one end to 
the anti-node at the opposite end and the wavelength of sound at 
the fundamental harmonic was found, it is as follows: 
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where L is the length of the tube in meters and � is the wavelength 
of the emitted wave. 
 
However, due to the reflective properties of waves at the open 
ends of a tube, the anti-nodes extend beyond the open ends1; this 
phenomenon is known as the end correction (Figure 1). Thus, by 
modifying equation 1 to include the end correction, it is as follows: 
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where L is the length of the tube in meters, C is the end correction of the tube in meters, and � is the 
wavelength of the emitted wave. 
 
Another equation was found relating the wavelength of a wave, to the frequency of the wave, where 
the relationship is non-causal. The equation is known as the wave relationship: 
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Where v is the speed of sound in air, f is the frequency of the wave, and � is the wavelength of the 
emitted wave. By manipulating equation 3 to show end correction in terms of the length, and the 
frequency it turns out as follows: 
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Therefore, from the equation above, the end correction is expected to be dependent on the frequency 
and the length of the tube. However, it was found that the end correction of an un-flanged open-ended 
tube is dependent upon the radius of the tube, where the end correction can be calculated to 
approximately 0.3 times the diameter of the tube1. The source omits the relationship (if any) between 

Figure 1: The end correction 
of an open-ended tube. 



the end correction of the tube, the frequency of the emitted sound, and the length of the tube. Therefore, 
according to the theory above, it is expected that the end correction will increase linearly with an 
increase in diameter of a tube.  
 
Design 
 
Research Question 
 
How does the diameter of an open-ended un-flanged tube affect its end correction? 
 
Variables 
 
The independent variable was the diameter of the open-ended un-flanged tube. The dependent variable 
was the end correction of the tube. Several controls were kept constant during the research to ensure 
the highest accuracy possible. Tubes with equal lengths of 39.7 (±0.1 cm) were used throughout the 
experiment and the resonance was always measured at the first harmonic to make sure that the length 
of the standing wave was kept constant The method of measuring the resonance was kept the same 
throughout the entire research by keeping the tube perpendicular to the speaker so that the position of 
the speaker would not interfere with the nature of the wave. The temperature was kept constant at 26 
(±0.1 °C) by keeping the air conditioners turned on. This was to ensure that the speed of sound would 
remain constant throughout the entire research. Lastly, the same frequency emitter was used to ensure 
constant systematic errors in precision. 
 
Materials and Procedure 
 
First, 6 open-ended P.V.C. pipes with 
different diameters were obtained and cut 
with a hacksaw to equal lengths of 39.7 (±0.1 
cm). A caliper was used to measure the inner 
diameter of the tube. Next, a frequency 
emitter that emitted a frequency in the form 
of a sine-wave was attached to a speaker and 
placed at the tip of the pipe, at a 
perpendicular angle. The frequency was 
gradually changed until resonance occurred at 
the highest possible frequency. This was to 
ensure that the fundamental harmonic was 
always being observed. 
  
This was repeated for six different diameters 
ranging from 14 mm to 56 mm; three trials were conducted for each radius to increase the precision of 
the research. Throughout the entire experiment, and the set-up was maintained. 
 
 
 
 
 
 

Figure 2: The experimental set-up. 



Data Collection and Processing 
 
The Diameter of the Open-Ended Tube and the Frequency of Sound at Maximum Resonance 

Diameter of Tube 
(±0.1 mm) 

Frequency of Sound at Maximum Resonance (±1 Hz) 

Trial 1 Trial 2 Trial 3 

14.4 424 424 424 
18.6 418 419 420 
22.7 415 416 416 
29.4 410 410 409 
36.5 406 407 406 
55.8 399 400 399 

Table 1: The diameter of the open-ended tube, and the frequency of the sound at maximum resonance. 
The uncertainty of the diameter and the frequency is the instrumental uncertainty of the ruler and the 
frequency emitter respectively. 
 
 
The Diameter of the Open-Ended Tube and the Mean Frequency of Sound at Maximum Resonance 

Diameter of Tube (±0.1 mm) Average Frequency of Sound at Maximum Resonance (±1 Hz) 
14.4 424 

18.6 419 
22.7 416 

29.4 410 
36.5 406 
55.8 399 

Table 2: The diameter of the open-ended tube, and the mean frequency of sound at maximum 
resonance. The uncertainty of the average distance was taken from half the largest range of all trials. 
 
 
The Frequency and the Calculated End Correction (First Harmonic) 

Diameter of Tube (±0.1 mm) Calculated End Correction (C) (±0.1cm) 

14.4 0.6 

18.6 0.8 

22.7 1.0 

29.4 1.3 

36.5 1.5 

55.8 1.9 

Table 3: The frequency and the calculated end correction, calculated by using equation 4. 
 
Note: The speed of sound in air at 26 (±0.1 °C) was used: 346.87 (±0.06 m/s)2.  
 



Sample Calculations 
 

i. Mean Frequency at Maximum Resonance (18.6 mm) 
= (Trial 1 + Trial 2 + Trial 3) / 3 
= (418 + 419 + 420) / 3 
= 419 Hz 
 

ii. Uncertainty of Mean Frequency at Maximum Resonance (18.6 mm) 
= Range / 2 
= (420 – 418) / 2 
= 0.1 Hz 
� 419 (±1 Hz) 
 

iii. Calculated End Correction (18.6 mm) 
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= 0.008462172 m 
= 0.8462172 cm 
 

iv. Uncertainty of Speed of Sound in Air 
= (Maximum Speed of Sound – Minimum Speed of Sound) / 2 
= (346.925 – 346.809) / 2 
= 0.058 m/s 
� 346.87 (±0.06 m/s) 

 
v. Uncertainty of End Correction (18.6 mm) 

= (Maximum End Correction – Minimum End Correction / 2 

= ( ) ( )
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= 0.0010297477 m 
� (±0.1 cm) 

 
vi. Uncertainty of Log10(Diameter) (18.6 mm) 

= (Maximum Log10(Diameter) – Minimum Log10(Diameter)) / 2 
= ( )10 10log 18.7 log 18.5 / 2−  
= 0.0023349391 
�  (±0.002) 
 

vii. Uncertainty of Log10(End Correction) (18.6 mm) 
= (Maximum Log10(End Correction) – Minimum log10(End Correction)) / 2 
= ( )10 10log 0.9 log 0.7 / 2−  
= 0.0545722347 
�  (±0.05) 



 
Figure 3: The diameter of the tube versus the end correction of the tube with a power fit. 
 
 
A log10(Diameter) versus log10(End Correction) was graphed because it was predicted that they would 
have a linear relationship. The derivation of the linear equation is shown below. 
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Therefore the slope of a log(Diameter) vs. log(End Correction) graph signifies the power n, while the 
y-intercept signifies the log10 value of the constant A. 
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The Log10(Diameter) and the Log10(End Correction)  (First Harmonic) 
Log10(Diameter) (±0.002) Log10(End Correction) (±0.05) 

1.158 -0.22 

1.270 -0.10 

1.356 0 

1.468 0.11 

1.562 0.18 

1.747 0.28 

Table 4: The log10(Diameter) and the log10(End Correction). 
 
 

 
Figure 4: The log10(Diameter) versus the log10(End Correction) with a linear fit. 
 
 



 
Figure 5: The log10(Diameter) versus the log10(End Correction) with 2 extreme linear fits. 
 
Sample Calculations (Cont.) 
 

viii. The Uncertainty of the Slope of Log10(Diameter) versus Log10(End Correction) 
= (Maximum Slope – Minimum Slope) / 2 
= (0.98 – 0.73) / 2 
= 0.125 
�  (±0.1) 
  

ix. The Uncertainty of Constant A 
= ( ) 10 10 / 2Maximum Y Intercept MinimumY Intercept− −−  

= ( )1.03 1.4010 10 / 2− −−  

= 0.0267 
�  (±0.02) 
 



Conclusion 
 
According to figure 4 and 5, an equation of the end correction in terms of the diameter of a tube was 
found. The slope of each graph signifies the power n, while the y-intercept signifies log10A. The 
equation turned out to be 
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The range of the 2 extreme lines in figure 5 was used to find the uncertainties of the power n, and the 
constant A.  
 
Therefore the expectation that the end correction would increase linearly with the increase in diameter 
of the tube is not supported because there seems to be a power relationship between the end correction 
and the radius of the tube. 
 
Furthermore, according to the theory that end correction is 0.3 times the diameter, the calculated end 
correction and the observed end correction calculated from the data of this research differed by at least 
30% in all trials. 
 
In figure 3, the x-intercept and the y-intercept approach zero, this makes sense because when the length 
of the tube is zero, it cannot have an end correction; a standing wave cannot be formed in a tube with 
length zero. 
 
The validity of this research is limited to open-ended P.V.C. tubes lengths of 39.7 cm and diameters 
ranging from 14 mm to 56 mm. While it is expected that the relationship for similar situations would 
be the same, further investigation needs to be done to confirm this.  
 
Evaluation 
 
The method of measuring the position of resonance at the first harmonic was a random error that could 
have affected the results. The position of resonance was based on our hearing, and where we thought 
the resonance was loudest. This created uncertainties in the measurements and decreased the precision 
of this research. A sound level meter could have been used to analyze the position where the resonance 
was actually at its loudest.  
 
Due to procedural uncertainties, the edges of the pipe were not cut equally, resulting in one side of the 
pipe being longer than the other side, therefore this was a random source of error. This could have led 
to uncertainties in the length of the standing wave and the reflective property of the waves, which in 
turn could have affected the end correction of each pipe. A machine could have been used to reduce the 
uncertainty in cutting, so that the edges of the pipe were uniform in length. 
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